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Thermal phenomena in lines




Thermal phenomena in lines 3

Electric lines carrying an electric current give rise to Joule
effect losses W,=R[-.

These losses, which will fransform into heat, are:
1. In part stored in the conductors themselves
2. In part released to the environment.

The primary effect of these losses is the increase in the
temperature of the conductors.

Problem: define maximum current or shori-
circuit/overload behavior for transmission lines (note that
similar considerations apply to other devices like
transformers, synchronous machines, induction machines
etc.).



Thermal phenomena in lines 4

Hypothesis: conductor of electrical resistance R with a
homogeneous conductivity, through which an RMS
electric current I flows.

Heat balance equation:

RI’dt=yvc dO+K.S,(0—06,)dt

where:

* @isthe temperature of the conductor (°C);

e yisthe density (kg/m3);

* visthe volume (m3);

* cis the specific heat (J/kg°C);

* K, is the global thermal heat transfer coefficient (W/m2°C);
* §,is the heat exchange surface area (m?).



Thermal phenomena in lines 5

A Heat release from a bare
O §’*~ conductor in air heated by
thermal power p and its
% equivalent thermal circuit.

Schematic representation of heat
transfer for a single-core cable
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Thermal phenomena in lines 6

Hypothesis: all of the enumerated coefficients of the
energy balance are constant.

We also consider that at =0, the temperature 6 =46, is the
ambient temperature (held constant), such that the
above differential equation can be integrated as follows
from the associated homogeneous equation:

yve d0+K,S,(0—-0 )dt=0 %d—e LY
A6 yvc

dt

t

AO(t) = Ae *

where:
yvc

AG =0-6,; A is the integration constant and 7= 5 is the time constant.
t~d




Thermal phenomena in lines

The particular integral can be obtained by solving the
equation at steady-state, namely for t - «, i.e., when the
system reaches the thermal regime:

2
AO(t) = ki

t~d

The general solution is:

R[2 !

AO(1) = +Ae *

t~d

The integration constant 4 can be deftermined using the
initial conditions =0, A@=0, for which we obtain

2 2 ot
A=—2 hey =2 [ e
K.S, K.S,

t




Thermal phenomena in lines 8

For t - o, we have A0,.=0,-0, (where 0.is the steady-

state temperature and 6, is the ambient tfemperature).
The preceding equation becomes:

AB(1)= A6, (1— e;j
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Thermal phenomena in lines K2

If the heat source is removed (i.e., the electric current is
iInterrupted), the device under examination will cool

down from the initial temperature 6. The initial
temperature difference at t=0, relative to ambient

temperature, will be Af,=60.-0, and the differential
equation driving the phenomenon is as follows:

yve %+Kt5d(9—6a)20

this is the homogeneous differential equation of the initial
heat balance equation.
The solution, with the hypothesis of AG=60-6, and

AG;=0.-0,, is as follows:

t

AB(t)=ABe *



Thermal phenomena in lines 10

The previous equation is the homogeneous differential
equation of the initial heat balance.

The solution, with the hypothesis of AG=60-6, and

AG;=0.-0, is as follows: N
AO(r)=ABe
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Thermal phenomena in lines o

If, In the initial heat balance equation, we consider
phenomena so rapid that they cannot give rise to heat
exchanges between the line’s conductor and the
environment (i.e., adiabatic heat transfer), the energy
balance equation is as follows:

RI*dt =yvc d6

This equation is only valid when the duration of the
phenomenon under examination is well below the fime

constant, namely Ar<<z. This condition applies, in

practice, to short circuits interrupted within a very short
time (i.e., <100 +~ 500 ms) thanks to protection systems.



Thermal phenomena in lines 12

If we integrate the preceding equation and consider the
constant current value during the period in which the
thermal phenomenon is studied, we obtain:

rPar=2% (g -9)
R

Where 6. is the temperature attained at the end of the

period At and 8, is the initial temperature.
In the case that the current is not constant during the

period At, the value of the current can be replaced by its
effective value during the period:

1At
I= |— |i*dt
JAJ

0




Thermal phenomena in lines 13

At
The term jiz dt s called the Joule integral or thermal

impulse. o

To understand the physical meaning of the Joule
infegral, we should consider the energy dissipated during

the period At with a resistance R and a current i

W:TRizdtaﬂzTizdt
0 R 0

Therefore, the Joule integral is the energy per unit of
resistance dissipated by the current i during the period Az
It is also called specific energy.
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Criteria for steady-state conductor m
sizing

In thermal equilibrium, the following equation is valid:
RI’=K,S,(6.-6,)

where
* K, is the heat transfer coefficient between the conductor and the
environment

* §,is the heat exchange surface area
e 6.is the temperature of the conductor
* 6,is the ambient temperature.

If we neglect the skin effect (i.e., consider the DC value of the electrical
resistance) we obtain:

Plp_ K,[P(6,-6,)
A

where
e A isthe cross-section of the conductor

* Pisthe perimeter of the conductor



Criteria for steady-state conductor m
sizing

The maximum current /. for a conductor is given by

IZ:\/PAKf (6.-6,)
Jo,

This value depends on:
« geometric parameters of the conductor (cross-section

A and perimeter P) ;

« characteristics of the conductor material (resistivity p);
« condition of heat release to the exterior (global heat

transfer coefficient K);
« (60.-0,), maximum permissible temperature difference.
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Maximum current for bare conductors




Maximum current for bare conductors n

In the case of bare conductors (without insulation), i.e.,
busbars, we can assume that the temperatures involved
are 6,=40°C and 8,=70°C (A6=30°C). If we determine the
global heat fransfer coefficient K, , it is possible to
evaluate the maximum current intensity of the conductor
itself as a function of the conductor cross-section.



Maximum current for bare conductors

Maximum current values for
conductors with circular cross-
section, in direct or alternating
current. We can see that for
conductors with diameters of
less than 16 mm, the DC and
AC maximum current values
are the same, whereas for
larger diameter values, the
skin effect starts to become
more important and the DC
maximum current value is
greater than the AC value.

Maximum current [A]
Diameter Cross-section Weight
[mm] [mm?] [ke/m] be AC
3 7,07 0,063 40 40
4 12,57 0,112 50 50
5 19,64 0,175 75 75
6 28,27 0,252 95 95
7 38,48 0,343 120 120
8 50,27 0,447 140 14C
9 63,62 0,556 165 165
10 78,54 0,699 185 185
12 113,10 1,007 235 235
14 153,94 1,370 285 285
16 201,06 1,789 350 345
18 254 .47 2,265 420 410
20 314,16 2,796 485 475
22 380,13 3,383 560 540
24 452,39 4,026 630 610
25 490,87 4,369 660 630
28 615,75 5,480 780 740
30 706,86 6,291 860 820
. L 2p
The penetration coefficientis a= 60—#

with p=1.78 108 Q/m, =314 s'!

u=4n107 H/m -2 a=9.5mm




Maximum current for bare conductors

Maximum current [A]
Dimensions [mm] Cmmfzc]mﬂ Weight [ke/m] 1 rod 2 rods 3 rods
Maximum current values for 102 20 0478 -
H 12x2 24 0,214 100
conductors with rectangular e P 067 e
° H 20x2 40 0,356 150
cross-section, alternating Ox3 20 0207 105
12x3 36 0,320 130
CurrenT' 15x3 45 0,401 165
20x3 60 0,534 200
25x3 75 0,668 235
30x3 90 0,801 280
40x3 120 1,068 355
20x4 80 0,712 235
25x4 100 0,890 280
30x4 120 1,068 300
40x4 160 1,424 385
50x4 200 1,730 455
20x5 100 0,890 280 515 710
25x5 125 1,113 334 600 830
30x5 150 1,335 365 635 930
40x5 200 1,780 450 775 1140
50x5 250 2,225 555 1020 1420
60x5 300 2,670 640 1190 1640
80x5 400 3,560 830 1530 2125
100x5 500 4,450 1035 1900 2650
40x6 240 2,140 510 940 1315
50x6 300 2,670 605 1110 1560
60x6 360 3,204 710 1305 1830
30x6 480 4,272 1010 1875 7530
100x6 500 5,340 1130 .2460 2920
40x8 320 2,848 585 1075 1510
50x8 400 3,560 705 1295 1820
60x8 480 4,272 830 1525 2410
80x8 640 5,696 1185 2180 3060
100x8 800 7,120 1300 2390 3350
120x8 960 8,544 1515 2810 3910
60x10 600 5,340 940 1730 2410
80x10 800 7,120 1285 2350 3200
100x10 1000 8,900 1450 2670 3710
120x10 1200 12,820 1715 3150 4390
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Maximum current for cables in steady- m
state conditions

For cables covered with insulating material, the maximum temperature
reached by the conductor will be equal to the temperatures of the first layers
of insulation - the proper functioning of the insulation depends heavily on
the operating temperature.

Cable isolation materials are subject to chemical reactions that modify their
electrical characteristics and lead to progressive degradation. The speed at
which these reactions occur, which is zero at room temperature, increases
exponentially with temperature according to Arrhenius’ law

B

R=Re &7

where:

 Risthe speed of reaction;

* Bis the specific activation energy of the chemical reaction;
« Kis Boltzmann's constant;

« Tis the absolute temperature in Kelvin (K).



Maximum current for cables in steady- m
state conditions

By analyzing the equation, we can see that if the operating
temperature increases, then the reaction rate increases and so do the
chemical reactions. This results in higher degrdation rates for higher
operating temperatures.

It is important to remember that cable life is inversely proportional to
reaction speed, as this reduces the life of the insulation.

It is possible to evaluate the thermal life of the insulation using the
following expression:

lnL=A+E
T

where:
« Lis the lifetime of the insulation - the length of time for which the

insulator can contfinuously maintain a specific temperature value without
unacceptable degradation of its electrical and mechanical
characteristics;

* A and B are specific constants calculated based on Arrhenius’ law.



Maximum current for cables in steady-

state conditions

If we establish an economically attractive service life for the insulation using
the Arrhenius chart, the corresponding temperature (6,) is the maximum

service temperature.
The figure shows thermal life curves for PVC and ethylene-propylene rubber —

EPR.
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Maximum current for cables in steady- m
state conditions

A cable carrying an electric current I, reaches the temperature 6, on
the conductor. Each time the cable is traversed by a current with a

greater value than I, (therefore 6> 6,), it leads to a reduction in the
cable’s service life.

Observations
« an overload is a temporary event;

« the duration of the overload ¢* may be shorter or longer than the
time required to reach the operating temperature corresponding to
the overload current: to increase the safety margin we consider

that the overload brings the cable to the temperature 8, of thermal
regime for the entire duration of the overload;

« Conventionally, we accept a 10% loss in cable life for all overloads
that may occur during the cable's lifetime (20 years);

« Conventionally, it is acceptable to assume that a single overload
event can lead to a reduction in service life equal to 0.1% of the
expected service life.



Maximum current for cables in steady- m
state conditions

Service life curves for insulating materials PVC (curve A) and EPR (curve B),
1/1000 service life reduction curves for PVC (curve C) and EPR (curve D)
cables.
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Maximum current for cables in steady-
state conditions
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Adiabatic thermal phenomena in the m
event of a short-circuit

If the duration of the thermal phenomenon is much shorter than the time
constant (adiabatic heat transfer), i.e., At <<z, the heat balance equation is
as follows:

rlI*dt =ycvd@

If Atis the protection tripping fime and 6, and 8, are the temperatures at ¢t =0

and ¢t =At, we have
)/cv

FA=5=(6,-6,)

If the conductor has the volume v=I4 ([ length and A cross-section) and the
resistance L [

A
Then: IPAt = ycv(e —0,)= KA

where K= \/% (Oe — 9;,)



Adiabatic thermal phenomena in the
event of a short-circuit

K:\/ﬁ(ee—eb)
P,

The factor K depends on the following parameters:

« physical constants of cable materials, for example density (),
specific heat (¢) and resistivity (p);

- temperature at the beginning of the event (6,);

- temperature at the end of the event (6,);

Observation: during the cable sizing phase, the maximum permissible
temperature will depend on the characteristics of the insulating
material.
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Permissible cable temperature in the E
event of a short-circuit

The temperature limit for cable conductors in the event of a short-circuit is
160 °C for PVC and 250°C for EPR (each short-circuit is assumed to have a

maximum duration of 5s)
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Permissible cable temperature in the
event of a short-circuit

PLA%s)

Joule integral (or specific energy) (1) as T \\\ Wi
a function of the current of the cable A T -
during a short-circuit. N

i = 7]
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Joule integral (or specific
energy) curves as a function of
cable current (EPR, copper,
three-core, laid in air)



Permissible cable temperature in the

event of a short-circuit

In practice, the value of the horizontal
asymptote corresponds to the product

K?4°where A4 is the cross-section of the
cable and K a constant which depends
on the insulation type (i.e., for PVC-
insulated copper conductors K=1135,
while for EPR or XLPE K=143).

The value of K is always relative to an
initial temperature 6, equal to operating

temperature 6, (70°C for PVC, 90°C for
EPR).
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Joule integral (or specific
energy) curves as a function of
cable current (EPR, copper,
three-core, laid in air)



Permissible cable tfemperature in the
event of a short-circuit
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